Bifurcation and chaotic behavior of a discrete singular biological economic system
نویسندگان
چکیده
In this paper, the complex dynamics of a discrete singular biological economic system are first investigated. Firstly, we establish a discrete singular biological economic system, which is based on the discretization of a differential–algebraic equations that is described by a ratio-dependent predator–prey system with harvesting and economic factor. Then it is shown that the system undergoes flip bifurcation and Neimark–Sacker bifurcation in the interior of Rþ , by using the new normal form of discrete singular systems, the center manifold theorem and the bifurcation theory, as varying the economic profit l in some range. Numerical simulations are presented not only to illustrate our results with the theoretical analysis, but also to exhibit the complex dynamic behaviors, such as cascades of perioddoubling bifurcation in orbits of period 2, 4, 8, and chaotic sets. These results reveal far richer dynamics of the discrete model compared with the continuous model. The Lyapunov exponents are numerically computed to confirm further the complexity of the dynamical behaviors. 2012 Elsevier Inc. All rights reserved.
منابع مشابه
Bifurcation and Chaos in Size-Dependent NEMS Considering Surface Energy Effect and Intermolecular Interactions
The impetus of this study is to investigate the chaotic behavior of a size-dependent nano-beam with double-sided electrostatic actuation, incorporating surface energy effect and intermolecular interactions. The geometrically nonlinear beam model is based on Euler-Bernoulli beam assumption. The influence of the small-scale and the surface energy effect are modeled by implementing the consistent ...
متن کاملDynamical behavior and synchronization of chaotic chemical reactors model
In this paper, we discuss the dynamical properties of a chemical reactor model including Lyapunov exponents, bifurcation, stability of equilibrium and chaotic attractors as well as necessary conditions for this system to generate chaos. We study the synchronization of chemical reactors model via sliding mode control scheme. The stability of proposed method is proved by Barbalate’s lemma. Numeri...
متن کاملBifurcation analysis and dynamics of a Lorenz –type dynamical system
./files/site1/files/0Abstract1.pdfIn this paper we consider a continues Lorenz – type dynamical system. Dynamical behaviors of this system such as computing equilibrium points, different bifurcation curves and computation of normal form coefficient of each bifurcation point analytically and numerically. In particular we derived sufficient conditions for existence of Hopf and Pitchfork bifurcati...
متن کاملAnalysis of chaotic vibration in a hexagonal centrifugal governor system
In this paper, the periodic, quasi periodic and chaotic responses of rotational machines with a hexagonal centrifugal governor are studied. The external disturbance is assumed as a sinusoid effect. By using the forth order Rung-Kutta numerical integration method, bifurcation diagram, largest Lyapunov exponent and Lyapunov dimension are calculated and presented to detect the critical controlling...
متن کاملDynamical behavior and synchronization of hyperchaotic complex T-system
In this paper, we introduce a new hyperchaotic complex T-system. This system has complex nonlinear behavior which we study its dynamical properties including invariance, equilibria and their stability, Lyapunov exponents, bifurcation, chaotic behavior and chaotic attractors as well as necessary conditions for this system to generate chaos. We discuss the synchronization with certain and uncerta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied Mathematics and Computation
دوره 219 شماره
صفحات -
تاریخ انتشار 2012